Shakebook - Robust Technical Documentation

Daniel Firth

2020-04-10

Contents
Shakebook 1
Features . . . . . . . . e 1
Latex . . . . o o e 1
Syntax Highlighting . . . . . . . . . . . 2
Image and Video Compilation . . . . . . . . ... .. o 2
PDF Output . . . . . . 2
Getting Started . . . . . . . L 2
Building . . . . . . . e 3
Serving . . ... e e 3
Content And Customization . . . . . . . . . . . . . . 3
Markdown & Table of Contents . . . . . . . . . . . .. ... 3
Images and Compilation Units . . . . . . .. ... . . . o 4
Build Management . . . . . . . ... e e e e e 4
Updating The Build Plan . . . . . . . . . . 4

Shakebook

Welcome to shakebook!

Shakebook is a documentation generator aimed at covering all the bases for mathematical, technical
and scientific diagrams, videos and typesetting, written in Haskell. Shakebook uses shake and pandoc
to provide combinators for taking markdown files and combining them into documents, but allowing
the user to control how. Shakebook provides a set of defaults for building sites like the one you’re
reading now, and you can mixin your own shake rules to add additional kinds of compilation units for
diagrams and video.

Shakebook allows you to take the same markdown contents and export them both to HTML and PDF
simultaneously. This website is generated by this template repository and deployed with gitlab pages.

You can fork this repository or you can use the leaner shakebook-template repository. Simply fork the
repository to a new gitlab group under a groupname.gitlab.io and the CI will take care of the rest.
For full running instructions see the Getting Started section.

Features
Latex

Shakebook supports inline latex using pandoc’s markdown renderer. For more information on latex see
here.


shakebuild.com
pandoc.org
http://gitlab.com/shakebook-site/shakebook-site.gitlab.io
https:://gitlab.com/shakebook-template/shakebook-template
https://www.latex-project.org/help/documentation/

e +1=0

Syntax Highlighting
Shakebook supports syntax highlighting powered by pandoc’s syntax highlighting feature.
class Functor f where
fmap :: (a -> b) -> (f a -> £ b)
Image and Video Compilation

Shakebook allows you to provide custom build rules for generating any content from source in a small
amount of code. Here we can see our site uses an example from reanimate, a library for video generation.

[Video available at [https://shakebook.site//animations/latex_ draw.mp4]

As well as an inline-r example.

o °
@
[
® [ ]
[=+]
- ® I
[
Y [ ]
b °
© o [ ]
= [ ] o °
> Xe =
o | L x
®
L * o
b o
~ ®
=] L] ® ®
® ° L
]
o | L ®
@ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Random Cluster

But you don’t need to stick to Haskell libraries. As long as you can build your content from source via
a shell command, you can tell Shakebook how to produce it.

For more information see the Images and Compilation Units section.

PDF Output

Shakebook allows you to take the sme markdown content and export it both to HTML and PDF
simultaneously, replacing the embedded video with a link wherever needed.

Getting Started

You will need the nix package manager to provide a build environment suitable for running shake.
Shakebook has heavy dependencies due to latex, pandoc, and image renderers, so you will want to


http://hackage.haskell.org/package/reanimate
https://www.stackage.org/package/inline-r
/docs/content-and-customization/image-compilation-units.html
https://nixos.org/nix/

install cachix and use the cache at shakebook.cachix.org. Run
cachix use shakebook

to set this up.

Building

First clone the template repository here.

Check that you can drop into a nix shell by running the command

nix-shell

Nix should pull in all the dependencies and set up the build environment for you.
One you're in the shell, you can just run

shake

and shake will grab all the content in the site/ directory, compile it, and dump it in the public/
directory,

Serving

You can use warp, which is provided in the nix-shell, by running
warp -d public

Then navigate to your site at localhost:3000

Content And Customization

This chapter deals with shakebook’s content system in depth.

Markdown & Table of Contents

Adding new markdown documents to your Shakebook is as simple as adding a new document in the
site/docs folder and then updating the table of contents in the Shakefile.hs.

The table of contents itself is represented as a Rosetree, (or alternatively a Cofree [] (Path Rel
File)). That is, a section header document followed by a list of subsections, recursively. We stop at 3
layers by convention, but some second level sections have no subsections.

tableOfContents :: Cofree [] (Path Rel File)
tableOfContents = $(mkRelFile "docs/index.md") :< [
$ (mkRelFile "docs/1/index.md") :< []
, $(mkRelFile "docs/2/index.md") :< [
$(mkRelFile "docs/2/champ.md") :< []
]
]

Note, at present you must perform an rm -rf public .shake before rerunning shake if you change
the Shakefile itself. The Shakefile does not track itself as a build dependency.

A markdown document is a yaml header followed by a bunch of markdown.

title: "My Document”
author: Me


cachix.org
https://gitlab.com/shakebook-site/shakebook-site.gitlab.io
https://en.wikipedia.org/wiki/Rose_tree

tags: [shakebook]
description: A description of my document

# My Header
Some text

* A bullet point

Note, only the HTML table of contents will use the yaml title field to display the name, whereas the
table of contents in the PDF export will use the hash headers in the markdown body itself.

Images and Compilation Units

Shake allows you to use external files as compilation units. This is usually a 3-step process. We walk
through adding R support in this document.

We first need to define a build action for taking an output path and running the corresponding source
file to produce an output image.

fromHaskell :: (MonadThrow m, MonadAction m) => [String] -> Within Rel (Path Rel File) -> m ()
fromHaskell opts out = do

src <- blinkAndMapM sourceFolder withHsExtension out

command_ [] "runhaskell" $ (toFilePath . fromWithin $ src) : opts

buildRPlot :: (MonadThrow m, MonadAction m) => Within Rel (Path Rel File) -> m ()
buildRPlot out = fromHaskell ["-0", toFilePath . fromWithin $ out] out

We then have to add a Shake pattern rule in the main shake body, to match on any output image and
call buildRPlot on it.

("plots//*.png" “within®~ outputFolder) %°> buildRPlot
Finally, we add a phony rule to allow us to run shake plots and build all plots simultaneously.

phony "plots" $
getDirectoryFiles sourceFolder ["posts/*.md"] >>= mapM withPngExtension >>= needIn outputFolder

Shake will take all the .hs files in /site/plots/ and compile them to images. You can add your own
rules to run external commands and copy them to the output directory. To include an image in the
output, just reference it using normal markdown syntax. In this case the file will end up in /plots/,
include it like so:

! [Cluster Example] (/plots/cluster.png)

Build Management

This chapter deals with how to manage shakebook’s build systems to add your own dependencies and
packages.

Updating The Build Plan

If you want to update the build plan for yourself. You can use these commands.

To update the nixpkgs base:

nix-prefetch-git https://github.com/Nix0S/nixpkgs | tee nix/nixpkgs-src.json



To update the haskell.nix package set
nix-prefetch-git https://github.com/input-output-hk/haskell.nix | tee nix/haskell-nix-src.json

If you make modifications to the package.yaml or to the stack.yaml, you will need to run
stack-to-nix using the haskell.nix tools.

stack-to-nix -o nix/ --stack-yaml stack.yaml

Remember, any modifications you make to the build plan will bring you out of lockstep with Shakebook’s
official cache, at which point you may want to set up your own.


https://input-output-hk.github.io/haskell.nix/user-guide/stack-projects/
https://cachix.org/

	Shakebook
	Features
	Latex
	Syntax Highlighting
	Image and Video Compilation
	PDF Output

	Getting Started
	Building
	Serving

	Content And Customization
	Markdown & Table of Contents
	Images and Compilation Units

	Build Management
	Updating The Build Plan



